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Preface

The burpose of thias study was to study the effect of
the corona wind on the heat transfer from a horizontal
cylinder. Although there have been a number of studies of
the effect of corona wind on heat transfer, nearly all have
involved satudying a flat plate. I chose to study the
cooling of a cylinder because: (1) analytical models for
cylinders are wall developed, (2) the geometry lends itself
to easier analysis, and (3) the cylindrical model has
potentially wide application in the cooling of tubes, wires,
pipes, and similar items by using the corona wind.

Although I did a considerable amount of testing and
varying paraseters, I feel 1 only acratched the surface of
the work that could be done. In particular, developing a
model for what effect the corona wind has on local heat
tranasfer coefficients around the cylinder would provide
better direction for any future research.

In performing my experimentation and writing this
thesis, I received a great deal of help and support from a
number of peopla. I want to thank my advisor, Professor
Milton Franke for his initial suggestion of thias research
and for his continuing patience and suggestions. I also
wish to thank Professor James Hitchcock and Captain Wesley
Cox for their suggestions and expert advice. In asasembling
the experimental apparatus and keeping it going, thanks go

to Mr. Nick Yardich and his technicians in the laboratory
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and to MNMr. Carl Shortt and the members of the AFIT

Fabrication Shop.

Henry Baird for his hours of help in preparation

report, and all the other members of section GA-84D for

their moral support.
Joelle, mny daughter Daras,

understanding and patience.

Linn E. Hogue
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I &lso wish to thank my friend,

Finally, special thanks go to ay wife

and my son Barrett for their

Captain
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Experiments wcr.'cbnductod to determine the effect of

the corona wind on the convective heat transfer from a

horizontally mounted, heated aluminum cylinder. The

cylinder was maintained at ground potential with respect ¢to

a positve high voltage emitter. Three types of emitters
were used in the testing to create the corona wind: two
stretched wires, 0.004 in and 0.0125 in diameter and a 19

point emitter. Tests in the free convection condition and

with the emitters at various distances and field voltages up
to 15 kV were performed to establish a baseline.

Emitters with and without a metallic mesh grid and a

two dimensional wooden shroud vere tested in various

configurations over a range of electrostatic field

conditions. 1In addition, the velocity of the corona wind in

certain configurations was measured and a blown air asaysatem

was used to simulate the corona wind with uncharged air to

compare their respective effects on the convective heat

transfer from the cylinder.

Results show that sasignificant increases <(up to 6

times) in convective heat transfer were effected. The grid

and shroud in various combinations were not as effective in

increasing the heat tranafer as the enmitters alone. The

uncﬁarged air was more affactive in increasing the heat
- xd Lo Y,




T T TR,

MM OO

Ty
PR S

-

Tr,v_v,-,- s
.
P .

transfer than corona wind at the same velocity. The size

and type of emitter chosen significantly affected the amount
of increase in heat transfer at a particular field voltage.
The parameters varied in the experiments included
eletroctatic field voltage, emitter to cylinder spacing,
enitter to grid spacing, type of emitter, and shroud spacing
and poasition. The primary techniques for data analysis were
an energy balance method and flow visualization with a Mach-

2ehnder interferometer.
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I. Introduction

A number of experimental studies have been done in the
past to examine the effect of an electroatatic field on heat
transfer rates. Generally, these studies involved using an
electrostatic field to create and accelerate ions and,
through contact with a fluid (usually air), create the

corona wind, or electric wind.

Some of the earlier studies done by Velkoff (15) and by
Velkoff and Marco (14) investigated the effects of
electostatic fields on heat transfer from a flat plate.
They were the first to show that the corona wind could
significantly affect the convective heat tranasfer from a
test article. O’Brien (9) later extended the work to
examine the effect of the preassure and composition of the
working fluid on the heat tranafer from a vertical plate in
the presence of an electrostatic field. His work showed the
effect of the corona wind cooling occurs with other fluids
other than air over a range of pressaures. Franke (4)
obtained increases in the heat transfer from a vertical
plate by inducing vortices on the surface of the plate using
an olectroitatic field. Hias analytical work added to the
understanding of the action of the electrostatic field near

the flat plate. Demorest and Gause (2) examined the effect

.t . O Catats - A e . .. - et e e T
VIS A PR S ST TS S 1 S O N I A S AT L ST VLR




on electrostatic cooling of a flat plate by varying

parameters such as emitter probe spacing and field voltage.
They discovered that these parameters can have a significant
aeffect on the corona wind cooling. Ho (6) discoverad the
relativa effect of using electrostatic cooling to improve
convective heat transfer under forced convection conditiona.
Mitchell and Williama (7)) investigated the use of
electostatic cooling in particular configurations of a
horizontal plate and found that there are several parameters
which can affect the corona wind cooling.

Although these studies all involved the effect of
electroastatic cooling on a flat plate with single or
multiple emitters or probes, later work expanded into other
areas. The studies of Shannon and Pogson (l11) using an
accelerating device to enhance the cooling effect of the
corona wind on a flat plate showed the poasibility of
increeaing the heat transfer rate even further with the
device. Stefkovich (12) studied the effects of corona wind
cooling on a vertical flat plate using a grid and two
dimensional nozzle to accelerate the corona wind. However,
he noticed 1little change in the heat transfer increase by
using these accelerating devices. Reynolds and Holmes (10)
investigated the the effect of the corona wind on a finned
tube in both free and forced convection. They noted a
significant increase in convective heat transfer from the

tube if the forced convection rate was low.

PP L PN Y o 3 g la o Sat oot
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All of these studies involved teating for the cooling
effect, or effect on heat transfer, of the corona wind or an
electrostatic field by using various devicea or by varying
parameters of the particular systenm. In particular, the
studies showed significant increases in convective heat
transfer from a flat plate in a variety of configurations
can be obtained. But most of them involved testing a flat
plate and there are few general conclusions which can be

drawn or extended to other geometries.

The objective of this study was to experimentally
examine the effects on convective heat transfer from a right
circular cylinder, suspended horizontally in air, using
corona wind generated by an electrostatic field between a
number of fine wire emitters mounted below the cylinder and

the cylinder itself. Further, the effects on heat transfer

- from this cylinder by accelerating and/or directing the

corona wind using a grid and shroud were to be examined.
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The resultas of using both unaccelerated and accelerated
corona wind on the cylinder would then be compared with the

baseline free convective heat tranafer and with using non-

L s
.

ionized forced air to simulate the action of the corona

wind.
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The experimental results were to be obtained by using

:

primarily an energy balance technique and, secondarily,

|
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using an interferometer method for qualitative results and
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flow visualization. Although no attempt to analytically
mnodel the complex interactions of the corona wind with the
free convective flow around the cylinder waas planned, the
intent was to make empirical observations which may be
helpful in both practical application of these results and
with follow-on work which may result in a model of this type

of ayatenm.

The objectives of this experimental study were met Dby
dividing the investigation into the following parts:

1. Measurement of baseline free convection heat
transfer rate with AT of S0 F and no high voltage DC field
applied. Comparison of these results with the predicted
values based on an empirical model waa included.

2. Measurement of the change in convective heat

transfer from the cylinder with high voltage field applied

to the multipoint emitter and two different stretched wire
emitters with no grid or shroud. All of the emitters were

positioned directly below the cylinder. The parameters

.

-

9

F% varied here were emitter spacing and field voltage.

:1' 3. Determination of change in heat transfer from the

ﬁ; cylinder with one atretched wire emitter and the multipoint

i emitter with combinations of the grid and shroud to

[: accelerate and direct the corona wind. Parameters varied
were emitter spacing, grid spacing, position of the emitter

with respect to the ahroud, and field voltage.
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4. Determination of the change in heat transfer using
ambient, uncharged air simulating the corona wind at the
aame velocity. Parameteras varied were air source apacing,
grid apacing, and air velocity. These results were then
compared with the corresponding results from experiments

using corona wind.
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II. Experimental Eguipment

The heat transfer from a horizontal cylinder was
investigated primarily uasing a heat balance method and, to a
lesser eaxtent, a Mach-Zehnder interferometer for heat
transfer calculations and for flow visualization. The
experimental equipment used to conduct these studies
included a number of sub-systems such as: (1) heated
cylinder, (2) Mach-Zehnder interferometer and camera sysatenm,
(3) thermocouple system, (4) low voltage AC system, (5) high
voltage DC system, (6) emitter devices, (7) grid and shroud
assembliea, and (8) blown air system. Each of these systems
is discussed in more detail below. Figures 1 and 2 show an

“A overall view of the test apparatus. Example configurations
of this test equipment used during testing are shown in

Figures 3 and 4.

Heated Horizontal Cylinder
An electrically heated right circular cylinder, 1 in in

diameter by 10 in long, was suspended with cotton braided

cord in the test section of the Mach-Zehnder interferometer
FI with its longitudinal axis horizontal. The cylinder was

n constructed in two halves to sllow for installation of

L
il thermocouples internally. It was then assembled using a
o
;ﬁ: flush fitting ring, or “collar"”, on each end. Figure S
"/
{; shows an internal view of the cylinder, while Figure 6 shows
. . a schematic of the internal placement of the 12
6
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thermocouples. The cylinder waas conatructed of 2024
aluminum with the surface machined to a smooth, nearly
polished surfaces. The cylinder had a 3/8 in diameter
circular channel along its centerline to allow for the
coiled heater element as well as the lead wire for the
thermocouples. The cylinder was maintained at electrical

ground potential through a connector on its upper surface.

Interferometer and Camera JSystem
A Mach-Zehnder type interferometer with 8 in diameter

optics, shown schematically 1in Figure 7, was used for

visualization of the thermal gradients around the circular .

cylinder. The interferometer used a 100 watt mercury vapor
lanp as a light source with a Wratten No. 77A filter, thus
producing monochromatic green light with wavelength 35461
Angstroms (10-10 peters). A Polaroid Graflex camera with
Polaroid Type 42 film was used to photograph resulting

fringe patterns.

Thermocouple System

The thermocouple system was used to measure the average
cylinder temperature. Twelve copper and constantan
thermocouples <(fabricated from Type T, 30 gage, teflon
coated thermocouple wire) were installed with their hot
junctions inside the cylinder within an average distance of
1716 in below the surface of the cylinder. In addition,

another two thermocouples were inatalled in the teat section
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of the interferometer to record the ambient temperature in

the test section. Each of the thermocouples was fabricated
using arc welding. The thermocouples installed in the
cylinder were covered with "“Omegabond 101" adhesaive, a
thermally conductive but electrically insulating epoxy
manufactured by Omega Engineering, Inc. The reference
junctions of the thermocouples were immersed in a distilled
ice water bath in & Dewar flask. The meagurement leads of
the thermocouples were connected to a Hewlwett-Packard (HP)
3495A Scanner, part of an Automatic Data System which also
included an HP 9835B System Controller and an HP 3455A
Digital Voltmeter. This syatem is shown in Figure 8. The
Automatic Data System .aad the computer program shown in
Appendix A, written in Hewlett-Packard BASIC programming
language, to sequentially sample each of the thermocouples,
measure its voltage, convert it to a temperature reading in
both Celsius and Fahrenheit using a Hewlett-Packard
converasion algorithm, and compute the average cylinder
temperature using a weighted syastem, and then compute the

AT between this temperature and the ambient temperature.

Low Voltage AC System

The Low Voltage AC system was used to maintain the
cylinder at a constant temperature. Low voltage in this
case is a relative teram. The actual voltage used in this

asystem was 0-120 VAC. A length of Nichrome wire, 0.0123 in
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diamater, sheathed in teflon tubing and shaped into a
helical coil, was used as a heater inaide the center channel
of the horizontal cylinder. This heater was connected to a
variable voltage (0-130 Volts), alternating current
transformer. The current passing through the heating coil
waa measured using a Hewlett-Packard 3466A Digital
Multimeter, which, when combined with the known resistance
characteristics of the heating coil, determined the power
input into the cylinder. A schematic of the 1low voltage

heater system is8 shown in Figure 9.

High Voltage DRC System
The high voltage system was used to generate and
“ measure the high voltage electric field in the gap between
the emitter and the cylinder. A schematic of the system is
shown in Figure 10. The emitter was supplied positive

voltage with respect to ground from a high voltage direct

current (DC) power supply (0 to 30 kV, 35 milliamps). The

elactric field potential was measured with a Sensitive

b
2.
W
N,
S
b
b
.

3

Research Corp. electrostatic voltmeter (0-15 kV) connected
between the high voltage lead and ground. The current
}L resulting from ion flow from the emitter to the cylinder (or
PY to the grid) to ground was measured with an in-line DC
| microammeter. All high voltage connections were made with

Beldon high voltage wire type 8866, rated for 40 kV DC.
h. The maximum field voltage that was tested was 15 kV due to

the measurement limit of the electrostatic voltrmeter.
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! Two types of emitter devices were used to generate the
high voltage field during teating: a stretched wire and a
Aaultipoint enitter (see Figure 11). The atretched wire
l emnitter was simply a length of wire (0.0125 in diameter
‘ Nichrome or 0.004 in diameter Chromel) mounted in copper
roda and stretched between two mounting brackets. The
I astretched wire was mounted horizontally so that it was
parallel to the 1longintudinal axis of the cylinder and

directly below the cylinder in the test section. Mounting

A

holes in the brackets allowed the stretched wire emitter to
be positioned a range of discrete distances with respect to
the cylinder without moving the cylinder. In use, the
stretched wire emitter was connected directly to the high
voltage lead of the high voltage DC power sasupply.

The multipoint emitter consisted of 19 copper rods (4
! in long by 1/8 in diameter) with 1/2 in sapacing between
them, each with approximately 1/4 in of 0.004 in diameter
Chromel wire set in the end and mounted in a copper bus bar
which was embedded in a plexiglas holder (see Figure 3).
The multipoint assembly was mounted so that each of the
copper rods (and their Chromel wires) were perpendicular to
the longitudinal axis of the cylinder and mounted directly
under the cylinder in the test section. 1In use, the bus bar
of the multipoint emitter was connected directly to the high

voltage lead of the high voltage DC power supply.
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A two dimensional shroud with variable area ratio was
used in some tests to direct and accelerate the flow from
the emitters. The ashroud consisted of two wooden wing-like
structures, each 1 1/4 in wv‘de by 13 in long by 3/8 1in
thick, with rounded leading and trailing edges. . The two
shroud pieces were mounted parallel to the emitter in the
same brackets. Figure 11 is a photograph which shows the
shroud mounted. The angle and position of the shroud pieces
with respect to the emitter could vary across a considerable
range. The entire emitter and shroud could be adjusted with
respect to the cylinder at the same discrete distances as
the emitter alone.

In addition to the shroud, a grid could be mounted in
the same mounting brackets as the emitter. The grid
consisted of a 1 in by 12 in rectangular section of aluminum
mesh mounted on a rectangular frame of 1/8 in diameter
copper rod. The mesh consisted of 29 gage aluminum wire
interiaced into squares providing a 0.05 in opening between
wires. In use, the grid could be mounted and ita position
adjusted separately from the emitter or the shroud. It was
inastalled with its flat surface horizontal between the
emitter and the cylinder. It was maintained at electrical
ground potential on a separate ground lead with a separate

DC ammeter than the cylinder.

11
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A blown air system was used to simulate the air flow,
or corona wind, from the stretched wire emittter. The
system (see Figure 12) consisted of a large wedge-shaped
plenum chamber with a 12 in long by 1/64 in wide slot on its
top edge which could be mounted in the mounting brackets in
the same relative position as the stretched wire emritter.
Compressed air from the AFIT laboratory supply line was
introduced intoc the plenum at two inleta near the bottom to
produce an air flow from the slot. The stagnation pressure
in the plenum was measured using a Bell and Howell 0-25 psig
pressure transducer excited by an HP 6205SB Power Supply and
the pressure reading taken in volts with an HP 3466A Digital

Multimeter.

12
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III. Experimental Procedures

The heat transfer rate from the entire cylinder was
determined primarily using an energy balance method and
secondarily uaing an interferometer method. The
interferometer mathod also provided a means of flow
visualizetion of the thermal boundary layer around the
cylinder. The test procedures and calibration techniques

are described here.

Energy Balance Method

The change of heat transfer rate for the cylinder
resulting from the action of the corona wind was determined
from the amount of electrical power required to be put into
the cylinder heater to re-establish the original temperature
difference of SO F between the cylinder and ambiént room
tenperaﬁure. By keeping this AT constant, the radiative
heat tranafer change could be neglected. In addition, the
conductive heat transfer away from the cylinder was
naglected because there was no significant means of
conduction. Thus, by neglecting these, the change in
convective heat transfer due to the corona wind was the only
means of heat loss and could be measured directly. This
method was also used to determine the change in convective
heat transfer uaing the blown air system which simulated the
corona wind. This energy balance method was applied to

seven test configurations labeled A through H in Figure 13.

13
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The specific test procedures for each configuration
waere the sane. Rooa temperature, relative humidity, and
barometric pressure were reasured to establish ambient
conditions. The cylinder was aligned with the emitter and
other components, such as the grid and/or shroud; then the
cylinder was aligned with the interferometear 1light beanm
using small pointers as well as the number and apperance of
the interference fringes. The low voltage AC heater in the
cylinder was adjusted to yield a AT of 50 F with respect to
ambient air in the test section. The heater current was
recorded and, when combined with the temperature vs.
rasistance properties of the heater material, the input
power calculated. The high voltage DC field was then

Q. adjusted to the desired level. The input heater current was
adjusted to re-establish the original AT between the
cylinder and ambient of SO F and the system allowed to
stablize. A AT of 50 F was used for all testa. The current
raquired to establish this new condition was recorded. At
this point an interferometer photograph was taken of the

atabilized condition. This proceas was then repeated for

each new setting of the high voltage DC field in each
particular configuration. To check the reproducibility of
e results, on three separate occasions, data for a particular
configuration was retaken on a different day. The data were
Y nearly identical on each occasion, giving confidence in the

¢ ) the experimental procedures.
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To model the air flow from the stretched wire emitter
by using the blown air system, the velocity of the corona
wind from the emitter was meagured for different emitter
distances and field power settings for which the heat
transfer rate was already known from previous tests. The
mneasurements were made using an Alnor Velometer, model
6000AP. The blown air system was then adjusted to deliver
the same velocity air flow at the same distance. Again, the
same velometer was used to measure the air velocity. The
heat transfer measurements were then taken and compared with

the corona wind results.

This method involved taking photographs of the
interference patterns produced by the Mach-Zehnder
interferometer. As described in the energy balance method,
the cylinder was first ;ligned with the emitter and the grid

and/or the shroud, and then its mounting frame was adjusted

Ff to align the cylinder (and thus the entire test
F; configuration) with the interferometer light bean. During
E! this alignment, the diastance, dg, between the emitter and
o the cylinder was measured with precision calipers.
ff Similarly, dmn, the emitter to grid distance, and dg, the
@

= enitter to sashroud exit plane distance, were precisely
LT measured during the alignment. Prior to each test, the
&

; interferometer was adjusted to the infinite fringe setting
@

i' - and the ambient temperature, relative humidity, and
-
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barometric pressure were recorded. Once the test

configuration was established, the high voltage field was
adjusted for the particular data required, and the system
was allowed to stabilize. A photograph of the interference
fringe patterna was taken using the camera system.
Photographs were taken at virtually all data pecintas in all
configurations. In some, but not all, a calibration marker
wag placed in the reference beam of the interferometer to
allow quantitative dimensional analysis of the

interferoreter photographs.

Calibration Technigues

After fabrication, aeach of the Type T, copper and
constantan thermocouples used waa calibrated against a
Fisher Scientific mercury thermometer. The reference
junction of the thermocouple was immersed in an ice bath of
distilled water and the measurement junction subjected,
along with the mercury thermometer, to a range of
terperatures from 32 F to 212 F in distilled water. The
thermocouple measurement leads were connected to an HP 3466A
Digital Multimeter to read the measurement voltages. All
thermocouples measured the same as the mercury thermometer
within one degree Fahrenheit under all test conditions.

After the thermocouples were calibrated, they were
connected to the HP 3495A Scanner, part of the HP Automatic

Data Acquisition System used. The reference junctionas of

the thermocouples were again immersed in an ice bath and the
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measurement junctions, along with a mercury thermometer,
subjected to the same range of temperatures as before. The
Automatic Data Acquistion System was then activated using
the computer program written for this experiment (see
Appendix A). Again, all thermocouples and the data systesm
yielded the same temperature, within one degree Fahrenheit,
as the mercury thermometer.

The low voltage AC heater coil used in the cylinder was
calibrated to determine ita resistance vs. temperature
properties. The coil, a teflon sheathed NiChrome wire with
0.0125 inch diameter, was installed in the cylinder in the
configuration used for all testing. The coil was heated by
adjusting the AC variable transformer to gradually increase

Y, the current through it. The temperature of the coil was
measured at the surface of the teflon sheath with a
theraocouple. Over a range of temperatures from 70 F

(ambient) to 300 F, the coil’s resistance, R, was measured

using an HP 3466A Digital Mulitimeter. The resiatance of
the coil was a weak function of temperature, ranging from

35.86 ohas at ambient to 36.18 ohms at 300 F. Since it was

-9

such a weak function of temperature (less than 1% variation
. over the usable range), an asverage value of 36.00 ohms was
;.‘ | used for all Ph calculations.
L The AT of the cylinder was calculated by the computer
,
fA program used in the HP 9835B System Controller in the
¢
V. Automatic Data Acquistion Systenm. The cylinder temperature

used was actually a weighted average of all 12 thermocouple

17
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temperatures in the cylinder. The weighting waas: each of

the 8 thermocouples installed at either end of the cylinder
was computed as 7% of the total, and each of the 4
thermocouples installed in the center of the cylinder was
computed as 11% of the total. This weighting was adopted to
compensate for the lower temperatures at the enda of the
cylinder due to convective losses through the ends. The AT
was then calculated in the System Controller to be the
difference between this waeighted average cylinder
temperature and the ambient temperature measured by one of
the thermocouples installed in the test section.

All nmeters and other test equipment were calibrated by

the Wright-Patterson AFB Precision Measurement Equipment

Laboratory or required no calibration.




IV. Datsa Analysis

The heat transfer rate from the horizontal cylinder was
calculated using three methods: an empirical model, an
energy balance method, and an interferometer method. Each

is described here.

Empirical Model Calculations

An empirical model was used to determine the average
free convection heat tranafer coefficient, ;o, for the
entire cylinder. In addition, the heat transfer rate for
the cylinder was calculated using this model to compare with
the experimental results.

From the well-accepted empirical equation for a

horizontal cylinder (1:364):

— 1/4

Nu = 0.525I(Gr)(Pr)] 1
where

Nu = hoD/k (2)
thus

1/4
- k(O.SZS)[(Gr)(Pr)I
ho = (3)

D

This is the basis for the empirical model. The calculations
for the free convection heat transfer coefficient for the

cylinder are shown in Appendix B. The empirical model

predictions are discussed further in Chapter V.




To compare the the effaects of teating with the various
equipment configurations and field power settings, some
measure was needed. The measure used throughout the tesating
was the dimensionless ratio, EIEO, defined as the ratio of
the ' average heat tranafer coefficient for the cylinder with
the electrostatic field applied divided by the average heat
transfer coefficient for the cylinder without the field
applied. The method for calculating E/Eo presented here is
essentially the method used by Franke (S) as modified by
Stefkovich (12).

The expression for the heat transfer rate by convection
from the horizontal cylinder is

No Qe = hAAT Ty
And similarly, for the free convection case
Qoc = hoAAT (S5)

By using equations (4) and (5), the ratio Q¢/Qoc is

Qc hAAT
= 6)
Qoc hoA AT

Then if the area A and temperature difference T are held

constant,
: h Qe
Y ho Qoc
”‘.
V“ The heat transfer rate at any time can be written as
L
b Qc = Qoc + 4Qc 8)
b
b. -
P~.
o
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Substituting equation (8) into equation (7) gives

h AQc
—_= 1 . (9
ho Qoc

Either equation 10 or 12 can be used to calculate E/go. The
total heat transfer rate from the cylinder is given by

Q¢ = Qoc * Qcol * Qr (10
Then the change in total heat transfer rate for the cylinder
from free convection to the field applied convection |ia
given as

AQt = AQg + 5Qc1l + AQy 11
If the changes in convective heat transfer rate from the
ends, AQcl, and the changes in radiative heat transafer,
AQy, are small, then

AQy = AQ¢ 12>
Under steady state conditions, the total heat transfer rate
from the cylinder is equal to the electrical power input by
the heater coil. This energy is found by measuring the
current put into the heater and by combining this with the
known resiatance of the coil using the relation

Q¢ = Pp = I2R 13
Now it follows that the the change in total heat transfer
rate is equal to the change in cylinder heater input power,
Ph. Using this and equation (11) gives

AQy = APh = AQ¢ (14)
Substituting equations (S) and (13) into equation (9) yields

APx

h
— ] o+ (15)
ho

hoAAT

21
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Where the input power to the heater coil in free convection,
Pho» is assumed to be
Pho = hoAAT (16)

Then substituting this into equation (15) yields

h APh
_— 1 €17)
ho Pho

Equation (17) is the basis for the experimental calculation of

the ratio ;lﬁo for all experiments in this study.

interferometer Method Calculations

A travelling microscope, accurate to 0.001 ca, was used
to measure the distance from the surface of the cylinder to
the first three interference fringes in an interferometer
photograph. Fringes were measured at seven positions
radially around the cylinder at 45 degree intervals.
Considering vertically upward as =zero and neaéuring
clockwise, the firat measurement station was at the 45
degree position and the last at 315 degrees. The straight
up position could not be measured because the fringes in
that position were blocked in the photograph and also were
greatly elongated by the upward flow. O‘’Brien’s computer
program (9) was modified considerably to enable using two
coordinate measurementa to get a radial distance from the
cylinder. It was further modified to run in BASIC computer
language on an 8-bit microprocessor to calculate the heat
transfer coefficients and gradients around the cylinder.

The computer program is listed in Appendix C. The heat




LY

transfer calculations for the interferometer were limited to
the free convection condition. Sample results from the
computer program are shown in Figure 34. With field power
applied, the interference fringes were not usable for
calculation. The results from the interferometer

calculation are further discussed in Chapter V.

23
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The heat tranafer rate for the horizontal cylinder in
free convection with no electrostatic field applied was
measured by the interferometer method to be 15.68 Btu/hr
(4.60 watts) with an ambient temperature of 71 F and a
cylinder temperature of 121 F for a AT of 50 F. A sample
of the interferometer results is given in Appendix C. Under
the same conditons the amount of power required to be put in
by the heater coil was 16.76 Btu/hr (4.91 watts). This
compares very well with the empirical model prediction (see
Appendix B) of 16.53 Btu/hr (4.84 watts).

From the empirical model prediction, Qcol» the
convective heat transfer from the ends of the c¢ylinder, is
0.229 watts, or 4.7%X of the total heat transfer and Qp, the
radiative heat tranafer, is 0.27S watt, or S5.7%X of the
total. The convective heat transfer is the majority of the

total heat transfer, since it is 89.6X of the total.

Measurements for the Stretched Wire and Multipoint Emitters

The firat test configurations used were the two
stretched wire emitters (0.004 in diameter Chromel and
0.0125 in diameter Nichrome) and the multipoint emitter
without the grid or the shroud. These are configurations A
and B in Figure 13. Figures 14, 15, and 16 show plots of

the ;/Eo va., field voltage for all three emitters at various
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emitter distances, dg. Note that the shapes of the curves
with different emitters are very similar. The primary
difference in the results ia due to the lower breakdown
voltage for the multipoint emitter and thinner satretched
wire emitter. The breakdown voltage is the field voltage at
which current firat begins to flow and form the corona wind.
The lower breakdown voltage for the multipoint emitter and
smaller diameter stretched wire emitter is due to the higher
electroatatic field intensity per unit area on the emitter
surface caused by its smaller surface area at the same field
voltage.

Figure 17 ahows the effects of the corona wind on the
cylinder created by the 0.004 in diameter Chromel stretched
wire emitter. No effect on the thermal boundary layer was
noted until the breakdown field voltage was reached and
current began to flow between the emitter and the cylinder.
The corona wind can be seen at the higher field voltages as
a thin stream impinging on the bottom of the cylinder. The
boundary layer appears to separate at approximately the
maximum width of the cylinder. The wake above the cylinder
assumed a closed oval shape typical of the results for all
of the stretched wire emitter tests. The emitter itself can
not be seen directly in the photographs because the bracket
holding it blocks it from view.

The effect on E/Eo when varying field input power at
varying emitter distances, dg, with the thin (0.004 in

diameter) stretched wire emitter is shown in Figure 18. For

25

P y .y o Aol - P PN DAL VA VIPUE TR WU W, SN SN ) LD SUNI. WU S . SHA)




—_———rwe

Qe

i 20 A agt Jar s meare e MABAEE Il Bt et die " aduic A S Pt g M AP AT A R A A

this emitter, the effect on E/Eo was virtually independent
of the emitter apacing:; it depended only on the input field
power. Figure 19 presents the relationship between field
current and input field voltage for this emitter at three
emitter distances.

For the multipoint emitter, the effect on the thermal
gradients was clearly different from that of the atretched
wire emitter as shown in the interferometer photographs in
Figure 20. Although the thermal gradients near the cylinder
are relatively undisturbed, the outer gradients fan out
across the field of view with increasing field voltage,
indicating the corona wind from the multipoint emitter is
more turbulent and less directional than with the stretched
wire emitter. This same effect wam noted by Stefkovich
(12:17-18) and he explained it as being caused by increased
ion concentration.

For the nmultipoint emitter, the effect on H/ﬂo from
varying input field power is shown in Figure 21 for the same
three distances as for the stretched wire emitter. Again,
for the nmultipoint emitter, the effect on ;/Eo isa almost
independent of the emitter distance, and dependas only on the
input field power. The relationship between field current
and input field voltage for the multipoint emitter is shown
in Figure 22,

By comparing Figures 18 and 21, it can be seen that at

any enmnitter distance, the multipoint emitter produces a

26
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higher value of E/Eo than the atretched wire emitter at the
same field voltage. Figure 23 indicates this more directly
by showing E/Ko varsua field voltage for the same value of
de, ©0.75 in, £for both the multipoint and stretched wire

emritter.

Configurationa C, D, and E in Figure 13 were tested to

N R 0

determine the effects on the convective heat transfer rate
from the horizontal cylinder by using a non-conductive wood

shroud and a metallic mesh grid to accelerate and direct the

e _ane Ao an e st 4

o

corona wind from the stretched wire and multipoint emitters.
{ Note that throughout the remaining discussion, the stretched
{
‘I ‘e wire emitter referred to will be the 0.004 in diameter

Chromel stretched wire emitter unless apecifically noted

otherwvise.

The initial configuration tested was the stretched wire
emitter with the shroud alone. During preliminary testing,
it was discovered that the non-conductive wooden shroud
significantly inhibited the electrostatic field, that is it
acted as a dielectric to prevent field current flow and thus
kept the corona wind from forming except at much higher
breakdown voltage. The only solution was to move the shroud
farther away from the emitter and the grounded cylinder.
However, the physical parameters of the test equipment used
limited the amount of spacing between them that could be

attained. Figure 24 ashowas a plot of H/Eo versus field
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voltage for a succeaful run with the stretched wire emitter
and the shroud alone. In thias case, the stretched wire
emitter ia poaitioned at the exit plane of the shroud. For
compariaon, data for the same conditions from the baseline
case without the shroud is shown on the same Figure. It can
be seen that with field power higher than about 0.5 watt,
there is virtually no effect on the convective cooling due
to the presence of the shroud. This result and the
difficulty in obtaining useful data with the shroud alone
limitad the testing of this configuration. Inatead, a
configuration with the grid alone or both the shroud and
grid was used.

The stretched wire emitter was tested using both the
shroud and the grounded grid in varioua configurations.
Figure 25 is a series of interferometer photographs for one
of these configurations at varioﬁs field voltages which
showsa a typical pattern of corona wind developreant.
Comparison with Figure 17 for the no sahroud and grid

baseline case, shows that with the ahroud and grid, the

boundary layer at the bottom of the cylinder is compressed
in the same nmanner and also that the boundary layer

separates at about the maximum width of the c¢ylinder.

However, the wake above the cylinder expands away from the

cylinder more than with the emitter aloune. An explanation

for this is that the grid, since it is grounded, removes
@

moat of the ions from the corona wind, so that the air |is
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essentially neutrally charged when it flows around the

cylinder. This uncharged air is not attracted to the
grounded cylinder like the charged air in the corona wind is
and does not adhere as closely to the cylinder.

However, these differences in the visualization of the
thermal gradients did not aignificantly affect the cooling
effect of the corona wind, even after altering aome of the
parameters of the configuration. For example, testing was
done with a dg (distance from emitter to cylinder) of 1.0 in
and a dy (distance from emitter to grid) of 0.75 in, leaving
a cylinder to grid distance of 0.25 in with the emitter 0.25
in behind the exit plane of the shroud. The configuration
was then changed with the emitter 0.75 in behind the exit
plane of the shroud, but with the same dg and dy which meant
the grid was at the exit plane of the shroud. Data were
then taken in this configuration. Another change was made
to move the cylinder to approximately 1/32 in above the
grid, but leaving the emitter, grid, and shroud positions
unchanged. The effects of all these configurations on E/Eo
versus field voltage is shown in Figure 26. As can be geen
from this figure, there was very little, if any, effect on
convective heat transfer from the cylinder by changing these
parameters with the stretched wire emitter. What effect was
noted was a slight decrease in E/Eo fr-+ the baseline case
with no grid or shroud.

Similar results were obtained for the multipoint

emitter with the same configurations given above, except

29




that the decrease in corona wind cooling from the baseline

Chail 4 AEREAPASNIMEE
a5 P '

cage of no grid or shroud was more noticable. Figure 27

shows the resulta of the same configurations for the

multipoint emitter as Figure 26 does for the stretched wire

emitter. Again, the baseline case of the multipoint emitter

with no grid or shroud was plotted as a reference. Note in

- Figure 27 that the emitter alone yielded a higher E/Eo than
any of the shroud and grid configurations.

As a general observation, in all of the teating with
the grid and shroud, & markedly increased tendency of arcing
from the emitter to the grid at relatively 1low field
voltages (10-12 kV) was noted. This is due to the increased
ion concentration in the volume of air confined by the

\e shroud and by the lower breakdown voltage of the small
diameter wires on the grid. Additionally, when using the
0.004 in diameter stretched wire emitter with the grid, the
wire would begin violent vibration above approximately 10 kV

and, 1if allowed to continue, would break the wire. One

interesting observation was that, when testing with the

t' grid, there was very little current flow from the emitter to
35 the grounded cylinder, usually no more than 3% of the total
';‘ field current. This meant that the grid was attracting the
L large majority of the ions and few were pasasina through.
£. However, there waa still a very significant cooling effect
}'. on the cylinder from the air that did pass through, in fact,
L not much less than without the grid. This implies that the
. 30

T L T T ST T T 1



——

v v Wy

L2 d

s g o e asn umd o
e o

corona wind could etill be used to cool non-conductive

objects as suggested by Velkoff and Kulacki (13).

Further testing was done to investigate the effect on
corona wind cooling by using the grid alone, since the grid
and shroud did not seem to be particularly effective. The
atretched wire enmitter was used with the grid mounted
between the emitter and the cylinder. As an example of the
results, refer to Figure 28. The stretched wire was tested
with dg equal to 1.0 in, with dn equal to 0.5 in and later
equal to 0.735 in. The results of the baseline case of no
grid or shroud with a de of 1.0 in were also put on the
figure for comparison. As the figure shows, neither
configuration with the grid gave as high an increase 1in
convective heat transfer rate as the baseline case without
the grid, however the differences are small.

Using the multipeoint emitter with the grid only gave
similar results. Figure 29 is a plot of E/So versus field
voltage for the configuration with the multipoint emitter;
with dg of 1.0 in and a dn of 0.75 in. Along with it is the
nmultipoint emitter with dg of 1.0 in and no grid. It can be
seen again that having the grid between the emitter and
cylinder produced smaller increases in convective heat
transfer than the emitter alone. However, as noted earlier,
there was s8till significant cooling (nearly as much as
without the grid) by the corona wind with very little field
current flow to the cylinder.

The results of this section can generally be summarized

31
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by pointing out that in all configurations of testing the
convective heat tranafer increases from this horizontal
cylinder, the emitter alone, whether stretched wire or
multipoint, produced an H/Eo at leaat aequal to, and usually
higher than, the same emitter with any combination of grid
and shroud at the asame input field power. However, when
using the grid in any configuration, yielded significant
heat transfer increases with 1little, if any, current

flowing to the cylinder.

Measurements of Corona Wind Velocity and Comparison with

The final objective was to compare the effects of the
corona wind on convective cooling of the cylinder with the
cooling produced by uncharged air blown in a manner to
simulate the corona wind. First the velocity of the corona
wind was measured at emitter distances and field power
settings at which ;/Eo had already been experimentally
determined. The blown air system was then adjuated to yield
the same velocities and the E/Eo determined with this
configuration. Thié then allowed the comparison of the
cooling effecta of the corona wind and the blown, uncharged
air.

The stretched wire emitter (0.004 in diameter) was used
in two configurationa to measure for the velocity of the
corona wind from the emitter to the cylinder. The firast was

with the grid between the emitter and the velometer probe;
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the aecond waa with the velometer probe directly over the
enitter. The velocities were measured at field voltages
corresponding to those used earlier in corona wind tests.
These velocities were then duplicated in the blown air
ayatem, deacribed in Chapter II, by again measuring them
with the velometer and then testing the convective c¢ooling
caused by this uncharged air blowing on the cylinder.

The reaults showed, as in Figures 30, 31, and 32, that
with no grid, the uncharged air generally produced a higher
E/Eo than the corona wind at the same velocity. However, in
at least the case of dg equal to 0.75 in (Figure 31), the
comparison was quite close. Note that in this testing, de
refers to either the emitter-to-cylinder distance or the air
source to cylinder distance.

With the grid between the emitter (or air source) and
the cylinder, the same conclusion is reached, as can be seen
from Figure 33. Here the cylinder ia only 1/32 in above
the grid and the blown air still produced a higher h/he at

the same velocity as the blown air produced.
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VI. Conclusions

Based on the results of thias study, the following
conclusions can be drawn:

1. Significant increases in the convective heat
transfer rate from a horizontal cylinder can be obtained by
using the corona wind for cooling. Under some conditions,
increases of more than saix times the free convection
condition were realized.

2. The corona wind was present only when there was
electrostatic field current flow. This substantiates
earlier work and reinforces the idea of ions accelerated by
the Coulomb force entraining air to create the corona wind.

3. Use of a grid and shroud to accelerate and direct
the corona wind resulted in either no increase or a smaller
increase in convective heat transfer than with the emitter
alone. Additionally, the presence of the non-conductive
wood ahroud inhibited the electrostatic field and the
formation of the corona wind. Use of the grid alone was
more effective than use of the grid and shroud together.

4. The corona wind produced a lower increase in the
heat transfer rate than non-ionized air at the same
velocity. The higheat velocity measured was 660 ft/min (11
ft/sec).

S. Significant increases in the convective heat
transfer rate were still present with the grid alone with

little or no current flow to the cylinder. This confirms
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the posasiblity of corona wind cooling of non-conductive
articles as mentioned by Velkoff and Kulacki (13).

6. Emitter s8size and configuration significantly
affected the convective heat tranasfer rate increases
produced by the corona wind. The multipoint emitter had the
loweat breakdown voltage, followed by the 0.004 in diameter
stretched wire, and the 0.0125 in diameter stretched wire
having the highest breakdown voltage. This difference then
affected the amount of increase in convective heat transfer
at the eame field voltage with all other parameters held
constant. Over the range tested, lower breakdown voltage
produced higher increases in convective heat tranafer as

well as higher field current at the same field voltage.
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VII. Recommendations

The corona wind cooling of a cylinder should be
investigated further to better understand its effects. This
ii investigation, however, should include:
1. Development of an analytical model of the
interaction of the corona wind with the cylinder, with
" applicability to other geometries and test articles. This

would give better direction to further experiments and would

also provide some predicted resuits to compare with the
® experimental results.
2. Redesigned instrumentation which would allow better
determination of local heat transfer coefficients and would
. (. probably contribute to the development of the nodel
. mentioned above.
3. Multiple emitter designs should be tested. This
E type of configuration would provide a broader, parallel flow
type corona wind easier to compare with the analytical
models for forced convection over cylindersa.
,ﬁ 4. Further explore the configurations described in

this study.
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Re Figure 3. Photograph of Cylinder in Test Section with
Multipoint Emitter Installed

Figure 4. Photograph of Cylinder in Test Section with
Shroud Installed
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Figure S. Photograph of Internal View of Cylinder
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- Figqure 6. Schematic Diagram of Thermocouple Placement
Inside the Cylinder
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Ve Figure 11. Photograph of Cylinder in Teat Section with
Stretched Wire Emitter and Grid Installed
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-

Figure 12. Photograph of Cylinder in Teat Section with
Blown Air System Installed
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: A. Cylinder with Stretched B. Cylinder with Multipoint
: Wire Emitter Emitter (see also fig. 3)
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) : 1
. ij; S§>
®
- C. Cylinder with Shroud and D. Cylinder with Grid and
Stretched Wire Emitter Shroud and Stretched
(Alao can use Multipoint) Wire Emitter (Also can
use Multipoint)
L
Figure 13. Diagrams of Test Configurations
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APPENDIX A

Computer Listing of HP BASIC Program Used

in Thermocouple Syatenm
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B . 1@ REM THIS PROGRAM SCANS CHANNELS WITH COPPER-CONSTANTAN
r 2@ REM THERMOCOUPLES AND GIVES THE TEMPERATURE REARDING ON ERCH
- 32 REM CHANNEL. IN BOTH DEGREES C AND F. IT ALSO GIVES AVERAGE
49 REM TEMPERATURE AND THE DELTA FROM AMBIENT
5@ REM
60 REM

70 REAL REFJUNCT, TEMPF, TEMPC, VOL TRGE, AVGC, AVGF, AMBC, DELTC, DELTF
8@ INTEGER X, Y,CHAN, COUNT
90 INPUT "ENTER RUN NUMBER", X
128 INPUT "ENTER DATE (DAY/MO)", Y
o 118 DATA 7,709,701
- 120 READ BUS, SCN, DV
- 13@ COM SCN, DVM, BUS
’ 140 PRINTER IS 16
15@ INPUT "ANOTHER PASS? (YES=1, NO=2) ", R
160 ON R GOTO 170,600
170 INPUT “FULL PRINTOUT? (YES=1, NO=2) ", §
180 ABORTIO BUS
190 REMOTE BUS
200 RESET BUS
21@ OUTPUT DVM USING "K";"F1R7T2T3"
220 AVGC=0
230 AVGF=0
240 IMAGE /, "RUN NO.: ", DD, /,"DATE: ", DDDD,//
250 PRINT USING 24@; X,Y
e 26@ FOR CHANNEL=@ TO 13
270 REFJUNCT=0
280 OUTPUT SCN USING "F";VOLTAGE
298 TRIGGER DVM
30@ ENTER DVM USING "F";VOLTRGE
" 310 TEMPC=FNTEMP (VOLTAGE, REF JUNCT)
@) 320 TEMPF=TEMPC#1.8+32.0
i 330 REM
340 REM HERE WANT TO CALCULATE THE AVERAGE CYLINDER TEMP USING A
35@ REM WEIGHTED AVERAGE WHERE THE CENTER OF THE CYLINDER IS GIVEN
360 REM 44% WEIGHTING AND THE ENDS ARE EACH GIVEN 28% WEIGHTING
¢ 370 REM
) 380 CHAN=CHANNEL+1
: 390 COUNT=CHANNEL DIV 4+1
4@@ ON COUNT GOTO 41, 440, 410, 480
410 AVBC=AVGC+. B7*TEMPC
. 428 AVGF=AVGF+. @74TEMPF
- 43@ GOTD S1@
(] 44@ AVGC=AVBC+. 11#TEMPC
- 450 AVGF=AVGF+. 11%¥TEMPF
46@ GOTO 510
470 IMAGE “CHANNEL ", DD, ":",/, mDDD.D, "C", &X, MDDD.D, "F", /
480 IF CHANNEL ()13 THEN 52@
490 AMBC=TEMPC
° S@@ AMBF=TEMPF
S1@ ON S GOTD 529,530
520 PRINT USING 47@;CHAN, TEMPC, TEMPF
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530
540
S50
560

570
Saee
598
600
610
620
630
640
650
660
670
680
690
700
710
720
73@
740
750

760
770

780

NEXT CHANNEL

DEL TC=AVGC-AMBC

DEL TF=AVGF-AMBF

IMAGE "AVG CYL TEMP:“, /, MDDD.D, "C", 2X, MDDD.D,
TEMP", /, MDDD.D, “C", 2X, MDDD.D, "F", //

PRINT USING 56@; AVGC,AVGF, DELTC,DELTF

OUTPUT DVM; “AL"

G0TO 15@

END

DEFFNTEMP (VOLTAGE, RJUNCT)

COM SCN, DVM, BUS

DIM JUNCT(2),COEFF(8)

JUNCT (1) =3. 6880238E1

JUNCT (2)=412770@1E-2

COEFF () =. 10086291

COEFF (1)=25727. 94369

COEFF (2) =-767345. 8295

COEFF (3) =78@25595. 81

COEFF (4) =-9247486589

COEFF (S5) =6. 97688E11

COEFF (6) =-2. 66192E13

COEFF (7)=3. 94078E14

COEFF (8)=1. @OE13

nen
‘ L]

--------

//, "DELTA

TEMP=FNPOLY (COEFF (#) , VOLTAGE+1E-6# ( (JUNCT (2) #RJUNCT+JUNCT (1) ) #

RJUNCT))
RETURN TEMP

DEF FNPOLY(CO(%*),VAL)=({({({((CO(B) #VAL+CO(7) ) #*VAL+CO(E) ) *VAL+CD(3))
#VAL+CO (4) ) #*VAL+CO(3) ) #*VAL+CO(2) ) #VAL+CO (1) ) *VAL+C0 (@)

FNEND
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Calculations for Predicted Free Convection Heat

Tranafer Coefficient

An empirical model was used to calculate the predicted

value of the free convection heat transfer coefficient.
following discussion repeats the equations on which
model is based and shows the calculation of Eo for
cylinder.

From the well-accepted enmpirical equation for

horizontal cylinder (1:364):

— 1/4
Nu = 0.525[(Gr)(Pr)]
where
N—L_l = l’_\oo/k
thus
1/4
- k(O.SZS)[(Gr)(Pr)I
ho =

D
For this system (1:361), with Ty = 120 F and Tq = 70 F:
Pr = 0.706, Gr = 5.176 x 104
Then ho = 1.358 Btu/hr-ft2-fF
Considering that (1:363)
Qoc = hoA AT

then Qo = 14.81 Btu/hr = 4.34 watt

But this result is based on the approximation for a

The

the

the

1)

(2)

(gc )]

(4)

very

long cylinder and does not include convective losses through

the ends of the cylinder, 8o now a correction is needed.
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Agssume the ends of the cylinder are small vertical plates;
then (1:367):

- 1/4

hcol = 0,29 [AT/D] S)
Then, for this aystem:

hcol = 1.435 Btu/hr-ft2-F
Now, by using equation 4 applied to the cylinder ends:

Qcol = 0.782 Btu/hr = 0.229 watt

The radiative heat tranafer rate can be calculated
using the assumption that the cylinder is a small gray body
and using the Planck function to find:

Qr = O €A(Tyd - Tad) (6)
The value of the emissivity, ¢ , for polished 2024 aluminum
is 0.07, thus, for the cylinder

Q@r = 0.94 Btu/hr = 0,275 watt

Upon examination of equation (6), it can be seen that
if the ambient temperature is held constant and the cylinder
temperature is held relatively constant, say + S R, then the
radiative heat transfer can be assumed to be constant. This
agsumption is further reinforced by noting that Qr is an
order of magnitude smaller than Qoc.

Now, if we neglect conductive heat losases from the
cylinder, then the total heat transfer rate is:

Qt = Qoc * Gcol * Or 7>

and subsituting in gives

Q¢t = 16.53 Btu/hr = 4.84 watt

P C. T
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l APPENDIX C

Computer Listing of BASIC Computer Program Used

for Interferometer Data

L Saur” 30
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10
2o
30
49
50
6o
70
21"
%
10@
110

AN I A ) T T T T N et Jan st Bal it et SR B ~ B i R SRt T R S R AN

REM HOGUE (GR-84D) INTERFEROMETER DATA PROGRAM

REM L=RUN NUMBER

REM XACT=ARCTUAL LENGTH OF REFERENCE WIRE, INCHES

REM XSCAL=MEASURED LENGTH OF REFERENCE WIRE IN PHOTO, INCHES
REM CM=MOLECULAR WEIGHT OF AIR, LBM/LB MOLE

REM NN=TOTAL NUMBER OF STATIONS MEASURED, USUALLY 7

REM KK=TOTAL NUMBER OF FRINGES

REM TC=TEST SECTION TEMPERATURE, R

REM PC=TEST SECTION PRESSURE, IN OF HG

REM

DIM SD1(1d),5D2(18),SD3(1d), X1 (18),X2(1d), X3(1@),Y1 (12),Y2(1d),Y3

(10) ,H(1@), TW(1@), R(1@}, T (1), WALL1 (10), WALL2 (1), F1(1@),F2(1d3),F3(18)

1z@
130
140
150
169
170
1802
190

INPUT L, XACT, XSCAL, CM, NN, KK, TC, PC

C=XACT/XSCAL

S=KK

A= (70. 73*CM*PC) /1543. 4

RC=R/TC

LPRINT "POS'N I H TW TF1 TF2 TF3":LPRINT

FOR I=1 TO NN
INPUT “NEXT WALL(X,Y),F1(X,Y),F2(X,Y),F3(X,Y) ", WALL1(I),WALLZ(]),

X1(D,Y1{D,Xa(I), Ya2(I), X3(I), Y3(I)

coe
210
22
238
240
_ 250
Qe c6e
270
280
290
300
310
320
330
340
35@
360
370
380
390
400
410
420
430
440
459
460
470
480
490
See
5i@
520

Y1(I)=Y1(I)%2.54:Y2(I)=Y2(I)*2,34:Y3(1)=Y3(I)*2.54 *'CONVERT TO CM
FL(I)=SAR{(X1(I)-WALLL(I))"2+(YI(I)-WALL2(I))}"2)
F2(I)=8SER((X2(I)-WALL1(I)) 2+ (Y2(I)-WALLZ2(I))"2)
F3(I)=SQR((X3(I)-WALLL (I))"2+(Y3(I)-WALL2(I))"~2)
SD1(I)=ABS(F1 (I) %, 393701)

SD2(I)=ABS(Fa2(I)*, 3937@1)
SD3(I)=ABS(F3(1)*,393701)

F1(I)=C#SD1(1) :F2(I1)=C*SD2(I):F3(I)=C*SD3 (1)
NEXT I

R(KK-2)=RC- (. 208589+ (5-2. 3))
R(KK-1)=RC-(.200589%(5-1.3))

R(KK)=RC-(. 200589+ (S~.5) )

T (KK-2)=A/R(KK-2)

T(KK-1)=A/R(KK-1)

T(KK)=A/R (KK)

DELT1=T(KK)~T (KK-1)

DELT2=T (KK-1)-T (KK-2)

CK=. 81516+ (T (KK) ~-54Q) *. 0067 /270

HA=9

FOR I=1 TO NN

GRAD1=DELT1/{(F2(I)-F1(I))
GRAD2=DELT2/(F3(I)-F&(I))

Av=, 5* (GRAD1+GRAD2)

TW(I) =T (KK) +AV#F1 (1)
H(I)=(124CK#AV) / (TW(I1)-TC)

HA=HA+H (1)

LPRINT USING " #% ";I;

LPRINT USING "  #. ###"3H(D);

LPRINT USING " SR B TW (D) 3T (KK) 3T (KK=1) T (KK—-2) :LPRINT
NEXT I

HAV=HA/NN

LPRINT :LPRINT "AVERAGE HEAT TRANSFER COEFFICIENT = "3;HAV
END
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Figure 34, Typical Results from Computer Used to Reduce

Interferometer Data
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Figure 3S5. Variation of Local Convective Heat Transfer

Coefficient Around Surface of Cylinder for
Free Convection
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Equipment List and Specifications

The experimental equipment used in this study is listed
here. Each entry is in the following format: name,
manufacturer, model or type number, serial number (SN), and

range.

1. Interferometer, Gaertner Scientific Corp., 8 inch optics

2. Light Source, General Electric Co., Magda Sunlight Lamp
Type S-4, 100 watt

3. Mirror, concave, 45 inch focal length, 7.5 inch diameter

4. Polaroid Camera, Graflex, with Polaroid Type 42 film

1. System Controller, Hewlett-Packard, 983SB with Real Time
Clock and HP-IB interface optiona, SN 1637A01722

2. Digital Voltmeter, Hewlett-Packard, 3455A, SN 1622A09252
Auto-acaled 0-0.1 volts

3. Scanner, Hewlett-Packard, 3495A, SN 1428A05735, 20
channel

4. Printer, Facit Corp., Model 4555, SN 8180050

S. Thermocouple Wire, Type T (Copper and Constantan), 30
gage, teflon wrapped

6. Dewar Flask (for Ice Bath)

Low Voltage AC Systen

1. Digital Multimeter, Hewlett-Packard, 3466A, SN
1716A18855, 0-2 ma (RMS) scale
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2. Variable Auto Transformer, Standard Electrial Products
Co., Type S00B, SN A3929, 0-135 volts AC

3. Nichrome Alloy Heater Element Wire, Driver-Harris,
0.0125 in diameter
High Voltage DC System

1. High Voltage DC Power Supply, NJE Corp., Model H-30-35,
SN 11806, 0-30 kV, 0-35 ma

2. Electrostatic Voltmeter, Sensitive Research Inatrument
Corp., Model ESH, SN 102132, 0-1S5S kV

3. DC Microammeter, Hickok Electrical Instrument Co., Model
14, 0-S0 uya, 0-100 ua, 0-200 ua, 0-500 ua

4. DC Microammeter, Westinghouse Electric Corp., Style
1164269, 0-200 ua

S. DC Microammeter, Simpson Electric Co., Model 26,
0-100 yua

6. DC Microammeter, Burlington Instrument Co., Model 331,
0-200 ua

7. DC Microammeter, Simpson Electric Co., Model 26, 0-20 ua
8. DC Microammeter, Simpson Electric Co., Model 26,

0-500 ua
Blown Air System

i. Dual Power Supply, Hewlett-Packard, 6205B, SN 073980,
0-40 VDC

2. Pressure Transducer, Bell and Howell Corp., SN 9510,
0-25 psig

3. High Pressure Compressed Air Hose, 1/2 in

1. Velometer, Alnor Instrument Co., Model 6000AP, SN 6077AA

2. Traversing Microscope, Central Scientific Co., SN 78039-
2279

3. Thermometer, Fisher Scientific, Type 14-983-15B, 0-230 F
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4. Sling Psychrometer, Taylor Instrument Co.
S. Calipers, Lufkin, Type 701, ©0-6 in, 171000 in
calibration
’
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